首页> 外文OA文献 >Posterior Mean Super-resolution with a Causal Gaussian Markov Random Field Prior
【2h】

Posterior Mean Super-resolution with a Causal Gaussian Markov Random Field Prior

机译:具有因果高斯马尔可夫随机变量的后均值超分辨率   领域先前

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a Bayesian image super-resolution (SR) method with a causalGaussian Markov random field (MRF) prior. SR is a technique to estimate aspatially high-resolution image from given multiple low-resolution images. AnMRF model with the line process supplies a preferable prior for natural imageswith edges. We improve the existing image transformation model, the compoundMRF model, and its hyperparameter prior model. We also derive the optimalestimator -- not the joint maximum a posteriori (MAP) or marginalized maximumlikelihood (ML), but the posterior mean (PM) -- from the objective function ofthe L2-norm (mean square error) -based peak signal-to-noise ratio (PSNR). Pointestimates such as MAP and ML are generally not stable in ill-posedhigh-dimensional problems because of overfitting, while PM is a stableestimator because all the parameters in the model are evaluated asdistributions. The estimator is numerically determined by using variationalBayes. Variational Bayes is a widely used method that approximately determinesa complicated posterior distribution, but it is generally hard to use becauseit needs the conjugate prior. We solve this problem with simple Taylorapproximations. Experimental results have shown that the proposed method ismore accurate or comparable to existing methods.
机译:我们提出了一种具有因果高斯马尔可夫随机场(MRF)的贝叶斯图像超分辨率(SR)方法。 SR是一种从给定的多个低分辨率图像中估计非高分辨率图像的技术。具有线条处理的MRF模型为具有边缘的自然图像提供了更好的先验。我们改进了现有的图像转换模型,compoundMRF模型及其超参数先验模型。我们还根据基于L2-范数(均方误差)的峰值信号的目标函数,得出了最优估计量-不是联合最大后验(MAP)或边际最大似然(ML),而是后验均值(PM)。信噪比(PSNR)。由于过拟合,在不适定的高维问题中,诸如MAP和ML之类的估计量通常不稳定,而PM是稳定的估计量,因为模型中的所有参数均作为分布进行评估。估计量是通过使用variablealBayes数值确定的。变分贝叶斯方法是一种广泛使用的方法,它可以近似确定复杂的后验分布,但是通常很难使用,因为它需要先验结合。我们用简单的泰勒近似来解决这个问题。实验结果表明,所提出的方法更加准确或与现有方法相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号